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Abstract. One of the biggest challenges in current and future timealoraurveys is to extract
the objects of interest from the immense data stream. Therev@ aspects to achieving this goal:
detecting variable sources and classifying them. Diffeeeimaging provides an elegant technique
for identifying new transients or changes in source brighth Much progress has been made in
recent years toward refining the process. We discuss a ieelaxftpitfalls that can afflict an auto-
mated difference imagine pipeline and describe some salsitiAfter identifying true astrophysical
variables, we are faced with the challenge of classifyirapthFor rare events, such as supernovae
and microlensing, this challenge is magnified because we balance having selection criteria
that select for the largest number of objects of interesiregja high contamination rate. We discuss
considerations and techniques for developing classifioathemes.
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INTRODUCTION

The field of astronomy is being revolutionized by wide-fieldgnd-based optical and
infrared surveys. The days when astronomical research was dsing data taken over
the course of a few nights on a single, large, classicallgduled telescope is giving way
to research experiments done with data from large survegsdhives and databases.
In the 1990’s, several microlensing surveys towards the L{d@. MACHO, OGLE,
EROS) provided the first coherent wide-figldd time-domain datasets. Such wide-field
surveys have been made possible not only by the tremendogsess in instrumen-
tation, but also by technological and data management adsgamfuture surveys like
Pan-STARRS, and LSST promise to have a nightly data yieldrablytes and total ac-
cumulated data in petabytes. As a community our challengee develop systems that
can handle this flood of data. In particular, in the time-domé is important that the
detection and classification of a transient has rapid tuooxad in order to trigger follow-
up observations. In this paper we discuss how to extract adesvevents from a sample
of millions. The first important step is to minimize false eetions due to instrument or
reduction artifacts. Once we've identified true astropbgtiransients, we are faced with
the challenge of classifying them. Throughout this paperywil use examples from the
ESSENCE[1] and SuperMACHOI2] projects, two time-domairveys, to illustrate the
concepts.
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FIGURE 1. ESSENCE difference image: The left panel is the templat&éérd thand from 2003-12-
01, the middle panel from 2006-09-10, and the right pandiésdifference image. The difference image
shows a supernova that is buried in the galaxy in the originages.

ELIMINATING FALSE DETECTIONSIN DIFFERENCE IMAGE
ANALY SIS

Difference imaging is most commonly used to detect trarisiand determine their light
curves. If difference imaging is not done carefully, howetee number of false detec-
tions due to instrument and reduction artifacts can outremdsal detections by several
orders of magnitude. In the following, we describe the défee imaging process and
how false detections can be minimized.

Difference I mage Analysis

The principle of difference image analysis (DIA) is straigbrward: Subtracting one
epoch (denoted as template) from another gives the differeetween the two images,
the signal of interest for time-domain surveys. In practicés rather complicated.
The first step is to reduce all of the images in a standardizayl (lwias subtraction,
flattening). The next steps are the more difficult ones: Befbtraction, the images
need to be aligned, and their PSFs matched. These last stepgdpidly evolved in
the last few years. The first implementation was by [3] whoodticed a method that
registered images, matched the point spread function (R8¥) matched the flux of
objects in order to detect transients. Derivatives of DIAdhbeen widely applied in
various projects (e.g., SuperMACHO|[2, 4]; ESSENCE[1]; AHENLS[5]). Since the
PSF varies over the field-of-view due to optical distortien®ut-of-focus images, for
example, it is essential to use a spatially varying kerngf[6

DIA is most useful for detecting and analizing transientsiagt complex back-
grounds such as galaxies or crowded fields. Figure 1 showpdver of DIA on an
example from the ESSENCE SN search: The difference imaglet(panel) shows a SN
which would have been very difficult to detect in the origimahge (middle panel) since
it is buried within the galaxy. DIA can similarly be used taee transients in crowded
fields and against a background of unresolved stars.
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FIGURE 2. An example of a bleed of saturated pixels from a bright st&ie Top panel show the
original image, the deprojected image, and the resultiffgréince image after subtracting the template.
Notice that the saturated pixels spread, increasing thebeumwf “bad” pixels. By using simple, linear
interpolation to more accurately estimate the sky flux as¢hgixels (lower panel, left image), we can
reduce the contribution from the saturated pixels and nenee pixels usable (lower panel, middle and
right image).

Mask Soread due to Image Alignment and PSF matching

Before the images can be subtracted, they need to be aligtesgghrdless of the
method, alignment always involves the convolution of asteme of the images, i.e.
the output pixel is a weighted sum of the input pixels withikeanel of a certain size. In
theory, any output pixel which has a bad input pixel (e.g tarséed pixel or a pixel from
a bad column) within its kernel is unreliable and must be redsRs a result the number
of masked, unusable pixels increases; the masks “spread’upper panel of Figure 2
shows a cutout from an image (left panel), its deprojectmthat it is aligned with the
other image (middle panel), and the mask image of the degirofe(right panel). The
white horizontal line is a bleed from a saturated star. Thagenconvolution used for
alignment introduces a “ringing” at the edge of the bleedsTimging is due to the fact
that these saturated pixels have flux values much greataettiie value corresponding
to the number of photons incident from the sky; consequgatign assigning smaller
weights to these “bad” pixels does not adequately mitigate effect. The contribution
from their pixel values is simply too large and they are masiet (white in upper right
panel).

The lower panels show the same deprojection, but this tiragikel values of the
bleed are interpolated prior to the convolution. This iptdation does not need to be
perfect or sophisiticated, in this case we just linearlgipblate between the upper and
lower pixel value. The “ringing” then disappears (middlenpblower row). Since the
pixel values of the originally saturated pixels now have enggalistic values, output
pixels with contributions from these “bad” pixels can nowused if the weight of the
contributions is small. In the right lower panel, pixels f@hich the contribution from
bad pixels is smaller than 10% are light grey and can stillsedywhereas pixels with a
larger contribution are white. These images demonstrataerpolating can minimize
the spreading of the masks.

Since the subsequent PSF matching is another convolutibspneads the mask even
more, interpolating bad pixel values can greatly reducentimaber of unusable pixels in
the final difference image. Figure 3 shows an example fronSingerMACHO survey.
The upper panels show an image from 2003-12-01 and 2002 & left to right,
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FIGURE 3. The upper panel shows SuperMACHO images from 2003-12-028608-12-10 from left
to right, respectively. In the lower panel, the correspagdiifference and mask images are shown from
left to right, respectively.

FIGURE 4. The upper panel shows an image of a very bright, saturatedestepanel), the difference
image (middle panel), and the mask image (right panel).drdiver panel, the bright star and its spikes
are masked, greatly reducing false detections.

respectively. Note that the image from 2003-12-01 has Bagmtly worse “seeing”

than the image from 2002-12-10. This leads to a significardegpng of the masks
(grey and white pixels in lower right panel) since the sizaéhaf convolution kernel is

proportional to the larger PSF size of the two images. Irdiaing the saturated pixels
before aligning the images renders a greater fraction atipixels usable (grey in lower
right panel). Without the interpolation, the transienticaded with the red circle could
not have been detected.

Saturated Sars

As described above, interpolation to estimate saturateel palues enables a reduc-
tion in the number of masked pixels in the difference imaganv@rsely, in some cases
extra masking can all but eliminate false detections. Amga is shown in Figure 4.
The upper panel shows an image of a very bright, saturatedistbpanel), the differ-
ence image (middle panel), and the mask image (right pafed.difference image in
the middle panel shows the halo of the saturated star as wéfleaspikes, both which
are only incompletely subtracted. These residuals oftggér low S/N detections. In
general, such bright stars are rare, and masking both tharstiats spikes, as shown in
the lower middle panel, greatly reduces false detectiotBeasmall cost of increasing
the fraction of masked pixels by less than 1%.

After aligning the images and masking saturated pixels, areapply standard dif-
ference imaging techniques to obtain difference imageiscdwa then be used to detect
transients.
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FIGURE 5. The left plot shows the difference image lightcurve of a siant from the SuperMACHO
survey. The right plot shows the corresponding forced pimetoy lightcurve, with microlensing and SN
fits overplotted.

Detecting Point Sourcesin Difference | mages

One of the main problems with the image differencing appnaathat there are more
residuals, e.g. cosmic rays and bleeds, than genuinelghlarobjects in the difference
image. As a result a standard profile-fitting software paekdige DoPHOT [8], has
problems determining the proper PSF to use for photomettpeéndifference image.
Instead we use a customized version of DOPHOT on the diféereanages that forces the
PSF to be the one determined for the original, flattened, mnadeed image. Applying
thisapriori knowledge of the PSF also helps to guard against bright fadsiives, such
as cosmic rays and noise peaks, which generally do not haediar £ SF.

The left panel of Figure 5 shows an example of a differencegamayhtcurve of a
transient from the SuperMACHO survey (filled red circlesheTtrigger in the Super-
MACHO survey is 3 detections with “signal-to-noise” (SINp. With only five detec-
tions having a S/N 5, however, one can see that not much can be said about ttre natu
of the event. To improve the light curve, we note that unlitemdard images, difference
images have two important properties:

« Difference images are largely empty of sources as most obbjects are non-
varying. The likelihood that two sources are close enougtt they need to be
fitted simultaneously is very small.

« The event position can be determined from the trigger dietest

This opens up the possibility to do “forced” photometry, potometry is forced in all
difference images at the event position. The blue circledanright panel of Figure 5
show the forced photometry of the example event. Clearlyefent lightcurve is now
much more constrained, giving rise to the difference imggirpression, “Zero flux is
not zero info!”

Detecting Extended Sour cesin Difference Il mages
Nearly all astrophysical transients are point sources. Qirtbe rare exceptions are

scattered-light echoes, which is light of a variable souetlected by dust. The study of
such light echoes, in particular light echoes of SNe, prewdost of newly-recognized
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FIGURE 6. Light echo arclets associated with Tycho. The orientat®oN up and E to the left and the
images are 325 x 250 arcseconds. The left and middle pareisthle first epoch image from 20 October
2006, and the second epoch image from 13 December 2007¢tieshe The right image is the difference
image. Areas of negative flux, where the echo has moved freodation in the earlier October image,
appear dark; and areas of positive flux, representing thember 2007 location, appear white.

observational benefits which have only just begun to be égalincluding: the capacity
to understand the connection between remnant propertigsthan outburst spectral
type, access to observables related to asymmetric explgsaperties, and geometric
distances [9, 10, 11]. The challenge is to find these lighbeshsince they are in general
faint (V > 22.5mag/arcsec®) and often at angular distances to the source event of devera
degrees. Figure 6 shows one of the brightest light echoesiassd with the Tycho SN
[11].

The current searches for light echoes [11] use visual irtgpeto find light echoes.
This is of course not doable in future large scale surveysP&NSTARRS, Sky Mapper,
and LSST. The problem is that standard photometric package®ptimized to find
centrally concentrated objects like stars and galaxiesaver, light echoes often do not
have such a peak, but they rather are extended arclets. ba#igeof light echoes from
ancient Galactic SNe, these arclets can have width’s amgdH&of tens or arcseconds.
Therefore what is needed is a photometry software thatathreither bins or smoothes
the data (binning or smoothing the images is prohibitivddoge surveys due to the disk
space and CPU requirements). If the source event positkomoien, then the smoothing
kernel optimally has the shape of an arclet of a circle wheseear is at the source event
position.

LIGHT CURVE FITTING AND CLASSIFICATION

The light curve provides the essential information for sisng events in the time
domain. While ideally the light curve will contain data frarmmany bands which provides
sensitivity to changes in the SED, multiple images must &édd off against imaging
more sky or going deeper to detect more and fainter souraesthis reason, the
SuperMACHO survey was primarily conducted in a single bdfat. SuperMACHO in

particular, and time domain surveys in general, analysisefight curveshape provides

the primary parameters for classification. At it's most bagiis analysis requires fitting
the light curve to analytic models or templates describimg transient of interest. In
many cases, however, either a model is unavailable, or Becafulow signal-to-noise
or sparse temporal coverage the fit is not sufficient to disiciate between different
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classes of transients. The lower panel of Figure 5 shows eotaitsing and SN fit to a
transient detected in the SuperMACHO survey, which havg senilar x2. In these
cases parameters describing the light curve (e.g. ratsef-time-to-maximum) can
provide a suite of attributes for developing classificatsmema (see [12] for a more
detailed discussion).

The advent of large data sets has spurred an explosion ihogienent of classification
schemes over the past decade. This conference has dentehdtra usefulness of
many of these techniques. For classification of rare evéiaisever, these techniques
are not always appropriate. Support Vector Machines, fanmgXe, require am priori
knowledge of the relative frequencies of the events beindistl. Often the event rate
or the full composition of the background population is uokmn. Principal Component
Analysis can be used to define a parameter space where this @fenterest reside.
If these is strong overlap with another transient, howetres, can make classification
difficult.

Another concern is that when classifying rare events, thantard of proof” must
be higher. This is particularly true when the rate of the mwent is much lower than
similar objects (e.g. type la SNe vs. microlensing in the SMACHO survey). In
this scenario we must balance loose selection criteria whihtkeep the maximum
number of the events of interest, “high efficiency”, agaisstamping the events of
interest with a more frequent event type, “high contamaondati In addition, if the event
is particularly rare (e.g. tidal disruption events), thetestion criteria that intuitively
match our understanding of the underlying physical proggrtan bolster acceptance of
the results. For example in the SuperMACHO project, bec&Me la have asymmetric
light curves while microlensing is a symmetric phenomenggiection criteria that
explore light curve symmetry provide both a robust and intai method for event
classification.

Ultimately any classification scheme will not provide 10086aracy. How one should
proceed depends upon the scientific question being askea. fioject such as Super-
MACHO where the goal is to understand the rate of microlepsihe scientific result
depends critically upon a quantitative understanding efdétection efficiency and con-
tamination rate. For a projuct such as ESSENCE, the rate &f I@Nloes not signifi-
cantly impact the result; however, contamination from otlgpes of SNe or transients
does. In this instance additional follow-up for classificat particularly spectroscopic,
is warranted.

CONCLUSIONS

Difference imaging can provide a powerful tool for identifg rare transients, even
against complex backgrounds. Increasing the reliabilitgifierence image detections,
however, is critical for large surveys due to the large vatuof data and need for
fast turn-around. We discuss several techniques that leattedse the number of false
detections from difference imaging and also increase tlablasarea of the images.
For time-domain surveys, difference image analysis prewidnly the first step for

identifying and classifying transients. In addition, dhtag reliable and complete light

curves through specialized photometry and classifyingatisjbased on their variability
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are critical to extracting the science from these projeSimple techniques such as
using a fixed-PSF profile with a forced centroid can greatlgnowe difference flux light
curves. Developing classification schemes based on thgseclirves remains an area
of active research. We find that often the science goals watate which classification
sheme is most appropriate.
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